
 

.NET GC Internals

Compact phase
@konradkokosa / @dotnetosorg

1 / 13



.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 13



Compact

All no-longer reachable objects must be "compacted":

3 / 13



Compact

All no-longer reachable objects must be "compacted":

In the .NET GC terminology, it means that we will move plugs around to produce
compacted heap.

3 / 13



(Non-Concurrent) Compact

So, we are after Mark & Plan phases.
4 / 13



Compact phase

Two main phases:

moving (copying) objects
updating all references between objects

5 / 13



Compact phase

Two main phases:

moving (copying) objects
updating all references between objects

Let's draw it. Pretty complex!

5 / 13



Compact phase

Two main phases:

moving (copying) objects
updating all references between objects

Let's draw it. Pretty complex!

In the end, we should do it in an opposite order - update references in the object
(because we know where it is and where it will be moved) and then move it
afterwards.

5 / 13



Compact phase - Relocate References

given an object, update all its outgoing references to a new locations
heavily uses bricks and plug trees:

let's draw...

6 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"
references inside survived objects on SOH:

with the help of bricks again - object by object inside a plug

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"
references inside survived objects on SOH:

with the help of bricks again - object by object inside a plug

references inside survived objects on LOH:
object by object - LOH sweep is done before SOH compaction

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"
references inside survived objects on SOH:

with the help of bricks again - object by object inside a plug

references inside survived objects on LOH:
object by object - LOH sweep is done before SOH compaction

references inside pre/post plugs 😍

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"
references inside survived objects on SOH:

with the help of bricks again - object by object inside a plug

references inside survived objects on LOH:
object by object - LOH sweep is done before SOH compaction

references inside pre/post plugs 😍
references inside objects from �nalization queue

7 / 13



Compact phase - Relocate References

We need to update/relocate references in MANY places:

references on the stack - yes, scan all managed stack frames
references inside objects stored in "cross-generational remembered set"
references inside survived objects on SOH:

with the help of bricks again - object by object inside a plug

references inside survived objects on LOH:
object by object - LOH sweep is done before SOH compaction

references inside pre/post plugs 😍
references inside objects from �nalization queue
references inside objects from handles

7 / 13



Compact phase - Compact

Plug by plug:

copy it with respect of relocation offset
restore pre/post plugs

8 / 13



Compact phase - Compact

Plug by plug:

copy it with respect of relocation offset
restore pre/post plugs

It may be pretty big memory traf�c!

8 / 13



Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

9 / 13



Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

Is it using some temporary buffer?

9 / 13



Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

Is it using some temporary buffer?

NO! It is not a Lego brick. You can copy-paste them byte-by-byte :)

9 / 13



Compact phase - moving plugs

Copy memory in groups of four pointer-sized regions at a time, then copying
remaining space in two or single pointer-sized regions:

void memcopy (uint8_t* dmem, uint8_t* smem, size_t size)
{
const size_t sz4ptr = sizeof(PTR_PTR)*4;
// ...
// copy in groups of four pointer sized things at a time
if (size >= sz4ptr)

  {
do

    {
      ((PTR_PTR)dmem)[0] = ((PTR_PTR)smem)[0];
      ((PTR_PTR)dmem)[1] = ((PTR_PTR)smem)[1];
      ((PTR_PTR)dmem)[2] = ((PTR_PTR)smem)[2];
      ((PTR_PTR)dmem)[3] = ((PTR_PTR)smem)[3];
      dmem += sz4ptr;
      smem += sz4ptr;
    }

while ((size -= sz4ptr) >= sz4ptr);
  }
// copy remaining 16 and/or 8 bytes

}

It will be compiled into several effective assembly instructions.
10 / 13



Compact

relocate phase - update outgoing references all over the place ✔
compact phase - move objects (plugs) around ✔

11 / 13



Compact

relocate phase - update outgoing references all over the place ✔
compact phase - move objects (plugs) around ✔
�x generation boundaries

11 / 13



Compact

relocate phase - update outgoing references all over the place ✔
compact phase - move objects (plugs) around ✔
�x generation boundaries
delete/decommit memory from segments <- that's important!

11 / 13



Compact

relocate phase - update outgoing references all over the place ✔
compact phase - move objects (plugs) around ✔
�x generation boundaries
delete/decommit memory from segments <- that's important!
... - additional bookkeeping

11 / 13



Compact - Large Object Heap

if enabled, LOH compacting is executed before SOH compacting
single loop scanning LOH for marked objects and copying them to the
destination one by one
for pinned objects, a corresponding free space will be created before them and
threaded into a free list

12 / 13



Compact phase

"If you would like to make your own investigations about SOH compaction
from CoreCLR code, take a look at relocate_phase (which updates addresses to
moved objects) and compact_phase (which recursively traverses plug tree brick
by brick by calling compact_plug and compact_in_brick methods)."

13 / 13


