A WARNING
INTERNALS

INCLUDED

©
/S

NET GC Internals

Compact phase

@konradkokosa / @dotnetosorg

1/13

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Generations - physical organization, card tables, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

2/13

Compact

All no-longer reachable objects must be "compacted":

\’oots B -
0’\ -
A C\’ [/x/’
5 w—
E

3/13

Compact

All no-longer reachable objects must be "compacted":

\'oots
kﬁ B 1] -
ﬂ .
DW-
E
ya 7
A 8] € To[ETFT G
A [BIOo[ET G-

In the .NET GC terminology, it means that we will move plugs around to produce

compacted heap.)
3/13

(Non-Concurrent) Compact

garbage_collect(n) Story of the gc.cpp
| file

- decide if do background GC
or force blocking one

should_do_blocking_collection

waken up on u:,
GC threadis v
nreadiz) N

(=]
=
background_mark_phase '
= Cornpy i i
. 1 7 D”'r‘tff.'!'rng relocate_phas compact_phase - ﬁxgeneratlgsboundanes
. -

N o
background_sweep plan_phase e decide_on_compacting 40
i Sueel R ke_free_lists 18 recover_saved_pinned_info

.._\\ / _—

bookkeeping etc.

So, we are after Mark & Plan phases.
4 /13

Compact phase

[A Bl Z IolElFIe]

L. A 1 BIolETl G |-

Two main phases:

e Moving (copying) objects
e updating all references between objects

5/13

Compact phase

[A Bl Z IolElFIe]

LA | BIOJE] G |-

Two main phases:

e Moving (copying) objects
e updating all references between objects

Let's draw it. Pretty complex!

5/13

Compact phase

[A Bl Z IolElFIe]

LA | BIOJE] G |-

Two main phases:

e Moving (copying) objects
e updating all references between objects

Let's draw it. Pretty complex!

In the end, we should do it in an opposite order - update references in the object
(because we know where it is and where it will be moved) and then move it
afterwards.

5/13

Compact phase - Relocate References

e given an object, update all its outgoing references to a new locations
e heavily uses bricks and plug trees:

a) brick table | | 0x6f1 | |

b)

0x16f0

0x13d8 0x1a28
) /\
\ - ——
“ -7 RS N 0x1048 0x1410 0x1738
% LTINS

\
NN
NN

0x16f0

0x1738
0x1a28

e let's draw...

6/13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames
e references inside objects stored in "cross-generational remembered set”

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames
e references inside objects stored in "cross-generational remembered set”

e references inside survived objects on SOH:

o with the help of bricks again - object by object inside a plug

a)

brick table |

| 0x6f1 |

=}
[
N
-

x
o

0x1a28 R

v

L\x\\\ﬁ

b) 0x16f0

T

0x13d8 0x1a28

0x1048 0x1410 0x1738

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames
e references inside objects stored in "cross-generational remembered set”
e references inside survived objects on SOH:

o with the help of bricks again - object by object inside a plug

a) brick table | |Ox6f1 | | b)

0x16f0

T

0x13d8 0x1a28

0x1048 0x1410 0x1738

v

L\x\\\ﬁ

N

g 8 2 g 8 8
S 5] < © N ©
< = = > < <
x x x 3 x x
o o o o o

e references inside survived objects on LOH:
o object by object - LOH sweep is done before SOH compaction

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames

e references inside objects stored in "cross-generational remembered set”

e references inside survived objects on SOH:
o with the help of bricks again - object by object inside a plug

a) brick table | |Ox6f1 | | b)

0x16f0

T

0x13d8 0x1a28

0x1048 0x1410 0x1738

v

L\x\\\ﬁ

N

g 8 2 g 8 8
S 5] < © N ©
< = = > < <
x x x 3 x x
o o o o o

e references inside survived objects on LOH:
o object by object - LOH sweep is done before SOH compaction
e references inside pre/post plugs &

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames

e references inside objects stored in "cross-generational remembered set”

e references inside survived objects on SOH:
o with the help of bricks again - object by object inside a plug

a) brick table | |Ox6f1 | | b)

0x16f0

T

0x13d8 0x1a28

0x1048 0x1410 0x1738

v

L\x\\\ﬁ

N

g 8 2 g 8 8
S 5] < © N ©
< = = > < <
x x x 3 x x
o o o o o

e references inside survived objects on LOH:

o object by object - LOH sweep is done before SOH compaction
e references inside pre/post plugs &
e references inside objects from finalization queue

7 /13

Compact phase - Relocate References

We need to update/relocate references in MANY places:

e references on the stack - yes, scan all managed stack frames

e references inside objects stored in "cross-generational remembered set”

e references inside survived objects on SOH:
o with the help of bricks again - object by object inside a plug

a) brick table | |Ox6f1 | | b)

0x16f0

T

0x13d8 0x1a28

0x1048 0x1410 0x1738

v

L\x\\\ﬁ

N

g 8 2 g 8 8
S 5] < © N ©
< = = > < <
x x x 3 x x
o o o o o

e references inside survived objects on LOH:
o object by object - LOH sweep is done before SOH compaction
e references inside pre/post plugs &
e references inside objects from finalization queue
e references inside objects from handles

7 /13

Compact phase - Compact

Plug by plug:

e copy it with respect of relocation offset
e restore pre/post plugs

len = 56
(]
o
gap plug gap plug pinned plug gap plug
A A A . A . A A
T T T 'ID A, T T
o 1 19 / o 1o I— A / w1812
o8 wataig ; 0 i 1S P
< o W%/ 1 % %éé;’ v A ;/,// P ,f
2 ' oo = : o oo a I o
s .« 2 S r 2 8 S T
5 1 & & - = 5 &
'
’

8/13

Compact phase - Compact

Plug by plug:

e copy it with respect of relocation offset
e restore pre/post plugs

len = 56
H
o
gap plug gap plug pinned plug gap plug
A A . A . A
T T T T ’ T T
o 1 19 o //’ {DIDIE s % i /mlalc
NI‘:\III; // / m|ﬂ?|% ; 7 ///ml,_|g /
[A ,4/// / TR A ey
I 2 Cg 3 2 e
s . 8 S 1 8 8 = =
5 1 & & - = 5 S 8
I ' .
] ,"' -
! save’d_pre_pl ug -
i - e

It may be pretty big memory traffic!
8/13

Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

-

7

9/13

Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

-

-

Is it using some temporary buffer?

v

9/13

Compact phase - Compact

Copying objects in place - how do they not overwrite themselves?

-

-

Is it using some temporary buffer?

v

NO! It is not a Lego brick. You can copy-paste them byte-by-byte :)

9/13

Compact phase - moving plugs

Copy memory in groups of four pointer-sized regions at a time, then copying
remaining space in two or single pointer-sized regions:

void memcopy (uint8_t* dmem, uint8_t* smem, size_t size)

const size_t sz4ptr = sizeof (PTR_PTR)*4;

// ...

// copy in groups of four pointer sized things at a time
if (size >= sz4ptr)

{
do
{
((PTR_PTR)dmem)[0] = ((PTR_PTR)smem)[01;
((PTR_PTR)dmem)[1] = ((PTR_PTR)smem)[11];
((PTR_PTR)dmem)[2] = ((PTR_PTR)smem)[21];
((PTR_PTR)dmem)[3] = ((PTR_PTR)smem)[31;
dmem += sz4ptr;
smem += szd4ptr;
}
while ((size -= szdptr) >= szdptr);
b
// copy remaining 16 and/or 8 bytes

It will be compiled into several effective assembly instructions. 10/13

Compact

e relocate phase - update outgoing references all over the place v
e compact phase - move objects (plugs) around v

/13

Compact

e relocate phase - update outgoing references all over the place v

e compact phase - move objects (plugs) around v
e fix generation boundaries

/13

Compact

relocate phase - update outgoing references all over the place v

compact phase - move objects (plugs) around v

fix generation boundaries
delete/decommit memory from segments <- that's important!

/13

Compact

relocate phase - update outgoing references all over the place v

compact phase - move objects (plugs) around v

fix generation boundaries
delete/decommit memory from segments <- that's important!

... - additional bookkeeping

/13

Compact - Large Object Heap

e if enabled, LOH compacting is executed before SOH compacting
e single loop scanning LOH for marked objects and copying them to the

destination one by one
o for pinned objects, a corresponding free space will be created before them and

threaded into a free list

padding

eeN 2 REEY/BEEE I ot

12/13

Compact phase

"If you would like to make your own investigations about SOH compaction
from CoreCLR code, take a look at relocate_phase (Which updates addresses to
moved objects) and compact_phase (Which recursively traverses plug tree brick
by brick by calling compact_plug and compact_in_brick methods)."

13/13

